2020. szeptember 16., szerda

Fridman

Van ez a Lex figura és egész érdekeseket beszélget mindenféle mesterséges intelligencia kutatókkal. És persze mindenki a távoli jövőbe teszi az emberi szintű mesterséges intelligencia létrejöttét, mert mindenki akadémikus vagy nagy cégeknél dolgozik, ahol nem lehet mellébeszélni. Az én blogomban viszont lehet mellébeszélni, ezért leírom a mostani gondolataimat, amit az utóbbi pár video megnézése után formáltam az agyacskámban.Általában azért nem sokat szoktak arról beszélni, hogy miért nem lesz egyhamar emberi szintű mesterséges intelligencia, csak azt, hogy még nagyon távol vagyunk tőle, mert az intelligenciáról sem tudunk sokat. Yann LeCun azt mondja, hogy egyrészt az emberi intelligencia nem túl általános, ez egy kicsit talán könnyíti a problémát, viszont a mostani leginkább használt módszer, a felügyelt tanulás nem lesz elég, az ember sem felügyelten tanulja meg a világot értelmezni és befolyásolni. És ha új paradigmára váltunk, mondjuk a félig felügyelt, vagy önfelügyelt tanulásra, akkor azzal még olyan keveset foglalkoztunk, hogy fogalmunk sincs, ha véletlenül hatékonnyá tudjuk tenni, mi következik utána. Ő azt mondja, hogy a nem felügyelt tanulás a következő hegy, amit a tudománynak meg kell másznia és fogalmunk sincs, hogy hány hegy van utána, ugyanis még nem értünk fel a tetejére. Lehet, hogy csak egy hegy van, lehet hogy száz.Én azt mondom, mi van akkor, ha nincs is több hegy?Elég optimista kijelentés ez, nem rám vall. De azért talán vannak okok az optimizmusra, ebből fogok néhányat felsorolni.Lehet, hogy a látás a fizikai világban sokkal nehezebb, mint a gondolkodás egy absztrakt világban. Ezért persze sok speciális neuront is fejleszettünk hozzá, de amennyire én tudom, matematikáért felelős neuront még nem találtak, már csak evolúciós okok miatt sem. Ugyanakkor bármilyen jó matekes is legyen valaki, nem tud fejben összeszorozni két 10 számjegyű számot, vagy elképzelni egy 5 dimenziós síkot (szerintem 4 dimenziósat sem, nekem legalábbis nem nagyon sikerült az előbb). Persze papírral nagyon ügyesen tudunk ilyen és ennel sokkal bonyolultabb matematikai objektumokkal operálni, de ez nekem azt jelenti, hogy bár jó reprezentációkat tudunk alkotni, túl sokat nem tudunk belőle tárolni (ugyebár a kognitív pszichológiában is megjelenik ez a fogalom, azzal a bizonyos 7-es számmal) és akkor ez eléggé limitálja is a dolgok mélységét amelyeket meg tudunk érteni, vagy legalábbis műveleteket végezni vele.Egy érdekes technikai fejlemény, hogy most a nyelvi problémák megoldásában igen hatékonynak bizonyuló transzformer módszerek eredetileg a gépi látásban jelentek meg, ahol az lett volna a feladatuk, hogy a kép részleket egy kanonikus pózba transzformálják, amiben már könnyebb felismerni őket. Ami igazán optimizmusra ad okot, hogy mostmár sokkal bonyolultabb modelleket tudunk alkotni, eddig nagyjából minden a konvolúcióra és egyébb egyszerű mátrixműveletekre szorítkozott. Viszont mostanában már gráfokon, halmazokon, akár kissebb optimalizációs feladatok megoldásán alapuló hálókat építhetünk, szerintem ezek már bőven elegek lesznek ahhoz, hogy megoldjuk a gépi látást és szerintem ezek a módszerek a hallásban és nyelvfeldolgozásban is meghozzák az áttörést. Már vannak olyan cikkek, amelyekben matematikai képletekkel végeznek műveleteket transzformerekkel és csodák csodája, hatékony heurisztikákat tudnak tanulni.Szóval az én kevéssé hozzáértő véleményem az, hogy nem lesz több hegy. És még rengeteg idő van 2029-ig, remélem, hogy a modellező programozási nyelvek is fejlődnek addig, mert szerintem most egy kicsit visszafogja a területet az, hogy Pythonban modellezünk, ami arra jó, hogy nagyobb kész kockákat összeillesszen, de ami nincs előre elkészítve, azt nem tudja apróbb részekből összerakni, mert ahhoz túl lassú. Most, hogy már antibiotikumokat is találtak mesterséges intelligenciával, ha beszáll az egészségügy a sok-sok pénzzel amit rá költünk, szerintem már sosem jön el a mestint tél.Na most erről nincs kedvem többet írni, majd jön a kiegészítő bejegyzés valamikor, amikor rájövök, hogy mit hagytam ki azokból amiket összegondoltam.

Nincsenek megjegyzések:

Megjegyzés küldése

örvendek, hogy nem Amerikában élek

Szóval az amerikai választásról csak annyit, hogy teljesen hidegen hagyott a dolog, nem úgy, mint 8 éve. Közben megértettem, hogy rengeteg m...